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ABSTRACT

A Fourier-Chebyshev spectral method for the incompressible Navier-Stokes
equations is described. It is applicable to a variety of problems including
some with fluid properties which vary strongly both in the normal direction
and in time. In this fully spectral algorithm, a preconditioned iterative
technique 1is used for solving the implicit equations arising from semi-
implicit treatment of pressure, mean advection and vertical diffusion terms.
The algorithm is tested by applying it to hydrodynamic stability problems in

channel flow and in external boundary layers with both constant and variable

viscosity.
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INTRODUCTION

Fourier-Chebyshev spectral methods have been employed in a number of
numerical simulations of stability and transition in three-dimensional wall-
bounded shear flows. Specific algoritlms have been developed for straight
channels ([1}, [2], [3]), curved channels [4], the parallel boundary layer
[5], cylindrical Couette flow [6] and pipe flow [5]. 1In all of these methods
Chebyshev expansions are employed in the direction normal to the walls and
Fourier methods are used in the remaining two directions. Hence these methods
are applicable whenever periodic boundary conditions are appropriate in two
directions.

These methods usually handle the pressure and vertical diffusion terms
implicitly, the pressure term so that the incompressibility condition is
enforced and the vertical diffusion term in order to relax the diffusive time-
step limitation. (The only exception is the method [4] which eliminates the
pressure by a clever choice of divergence-free velocity expansion functions.)
Algorithms which employ time-splitting ([l], [5]) can achieve a relaxation of
the advective time-step limit by a semi~implicit treatment of the streamwise
advection., These implicit equations are solved by a direct method for which
the efficiency depends wupon simple mean velocity profiles and constant
viscosity. However, there are situations in which time-splitting errors are a
serious problem [6].

If the spectral discretization in the normal direction is replaced with a
finite difference method, then the direct solution of the implicit equations
can be performed efficiently for mean flow profiles and viscosities with an
arbitrary dependence upon both the normal coordinate and time. Such Fourier-

finite difference codes have been utilized both for channel flow [7] and for



the parallel boundary layer [8]. The price for this extra flexibility,
however, is greatly reduced accuracy in the normal direction.

The contribution of the present paper is the description of a Fourier-
Chebyshev algorithm for wall-bounded shear flows which combines the accuracy
and efficiency of a fully spectral scheme with the flexibility of a Fourier-
finite difference method. The key feature of this algorithm is a precondi-
tioned iterative technique for solving the implicit equations arising from the
semi-implicit treatment of the pressure, mean flow and vertical diffusion
terms. This algorithm is applicable to most of the cases described above—-
channel flow, parallel boundary layers, curved channel flow and cylindrical
Couette flow. Relatively minor modifications are required to treat the
different cases. Illustrations will be provided here for straight channel
flow and for parallel boundary layer flow with constant and variable
viscosity. The discussion will be restricted to two-dimensional flow. The

addition of a second periodic direction is straightforward.

2, DISCRETIZED NAVIER-STOKES EQUATIONS FOR CHANNEL FLOW
The rotation form of the two-dimensional incompressible Navier-Stokes

equations is

u, - v(vx - uy) + Px = (uux)x + (uuy)y (2.1)
A + u(vx - uy) + Py = (uvx)X + (uvy)y (2.2)
u +v_=0, (2.3)




where the variable P denotes the total pressure and subscripts denote
partial derivatives. The viscosity u 1is presumed to depend upon y and ¢t
only and the density is taken to be unity, Periodic boundary conditions in
x and no-slip boundary conditions at y = 1 are assumed.

The spatial discretization of Equations (2.1) - (2.3) employs spectral

collocation. The collocation points are

x; =] L /K j = 0,100 ,K-1 (2.4)
mv
y, = cos(—ﬁj m= 0,1,%¢¢,N, (2.5)

where L, 1is the periodicity length in the streamwise direction, and K and
N are the number of intervals in the x and y directions, respectively.
The dependent variables have Fourier-Chebyshev series of the form

K/2-1 N 2mikx/L

u(x,y,t) = ) I u (t)e 1 (v, (2.6)

k=-K/2 n=0
where T, is the Chebyshev polynomial of degree n. In the spectral colloca-
tion method, spatial derivatives of u are obtained by differentiating the
series expansion with the expansion coefficients ukn(t) determined by
discrete Fourier and Chebyshev transforms of the grid point values of u. The
details of this procedure can be found in [9] and [10]. In the temporal
discretization, the pressure gradient term and the incompressibility
constraint are best handled implicitly. So, too, are the the vertical
diffusion terms because of the fine mesh-spacing near the wall. The variable

viscosity prevents the standard Poisson equation for the pressure from



decoupling from the velocities in the diffusion term. A simple time
discretization uses Crank-Nicholson on the implicit terms and second-order
Adams-Bashforth on the remainder. After a discrete Fourier transform in x,
the following set of ordinary differential equations and boundary conditions

result

“n+l | ‘ol

Buyy +u + ikQ =u + 5 (3H1 H1 ) ikQ + Buyy (2.7)
“n+l | “notl okl _ “n |, At qn _ sn=ly  “n “n
By,  F VT HQ T = v+ (3u, - H, ) Q + BV, (2.8)
and
~ika®tl - o Lo, (2.9)
y

a(-1) = u(+1) = 0
- . (2.10)

v(=1) = v(+1) =0
where k = 2wk/Lx, B = + E%E Q = A% P, 1 = V=1, and hats denote Fourier

transformed variables in wavenumber space. The wavenumber is denoted by k
and the dependence of ﬁ, 3, and Q upon k has been suppressed. The
superscript n represents the time level. H; and Hy, which contain the

terms treated explicitly, are given by
= - - + + - .
H1 v(uy vx) (uux)x uy uy lemean (2.11)

H2 = —u(vX - uy) + (uvx)x + uy vy. (2.12)

The last term in Eq. (2.11) is the mean streamwise pressure gradient which




drives the channel flow. All of these derivatives are evaluated by spectral
collocation. A semi-implicit treatment of the mean streamwise advection term
is easily incorporated. For example, the left-hand side of Eq. (2.7) has the

additive term

in addition, up uy appears in Eq. (2.11).

For each wavenumber k, the system of Eqs. (2.7) - (2.9) can be written as

LU-=F, (2.13)

where U = (Gn+1, ;n+1’ 6“+1) and F is the known right-hand side. The
matrix L is a full MxM matrix where M = 3N. A direct solution of (2.13)
by Gauss elimination methods would require O(MZ) storage and O(M3)
arithmetic operations. An iterative solution, on the other hand requires only
0O(M) storage and O(M log M) operations per iteration. The description of
an effective iterative scheme will be provided in the next section. The use
of the variable 6 in place of % puts L into a nearly self-adjoint form.
At this point some remarks pertinent to our selection of this scheme are
in order. Our goal was to develop a single, fully spectral algorithm which is
applicable to a broad class of problems. Many interesting phenomena involve a
strong variation of the viscosity, the mean advection, and/or the geometric
terms in the direction normal to the wall (or walls) and possibly also in
time. (A number of three~dimensional calculations employing the present

algorithm on such problems are in progress and will be reported elsewhere.)

In many of these problems semi-implicit treatment of the normal diffusion



and/or the mean streamwise advection are desirable. The observations of
Marcus [6] about the pitfalls of time-splitting in some problems is a strong
argument in favor of an un-split method for a general purpose algorithm. A
Chebyshev tau method in the normal direction is ruled out in favor of
Chebyshev collocation in all but the simplest cases. The variable viscosity
and mean advection prevent the velocity and pressure equations from de-
coupling as in the influence matrix methods ([3], ([6]). The matrix
diagonalization technique for solving Eq. (2.13) is not practical because the
matrix L may depend upon time. These considerations have led us to develop

an iterative technique for solving the collocation equations.

3. SPECTRAL SOLUTION WITH FINITE DIFFERENCE PRECONDITIONING

The key to the efficiency of an iterative method for the solution of Eq.
(2.13) is the use of an effective preconditioning matrix so that the number of
iterations is small. The reason is that the condition number of the matrix
L 1is large. Consequently, standard iterative techniques would be slow. But
let H be some preconditioning matrix for L, i.e., the iterative scheme is,

in effect, applied to the equation

il Lu=mx8lrF.

The desirable properties of the preconditioning matrix are that the condition

number of p-l L be small and that equations such as




can be solved cheaply for U (relative to the evaluation of LU). The first
property implies that only a small number of iterations are required and the
second property implies that a single preconditioned iteration costs roughly
the same as a single un-preconditioned iteration. We base our choice of H
on Orszag”s suggestion [11] that a finite difference approximation to the
differential equation be used. The interesting physical problems have high
Reynolds number, i.e., low viscosity. Thus, the first derivative terms in Egs.
(2-7) - (2-9) predominate. Therefore, the effective preconditioning of them
is crucial.

To illustrate the difficulty with first derivative terms and to assess

various remedies we consider the model scalar problem

u =f (3.1)

on [0,2n] with periodic boundary conditioms. The appropriate spectral
method uses Fourier collocation. The eigenfunctions of the discrete spectral
operator L and of the finite difference operator H are the exponentials

ikx,
e J

where k is the wavenumber and X5 is a Fourier collocation point as given
by Eq. (2.4). Four possibilities for the finite difference operator are
considered here: central differences, central differences with a high mode
cutoff, one~sided differences and the use of a staggered mesh. The

eigenvalues of these preconditioned matrices, H_1 L, for the model scalar

problem are given in Table I for all four possibilities. The term kAx 1is



the product of the wavenumber k and the grid spacing Ax. It falls in the
range 0 < kAx < 2w, The eigenvalues for the centered differences

kAx/sin kAx, are wunbounded as kAx > w. Thus, pure central difference
preconditioning yields a large condition number for gl L. Orszag [11] noted
that truncating the high modes limits the eigenvalues. Table I indicates that
this does produce a bounded spectrum; the price is that some high wavenumber
information is lost. Another cure is to use one-sided (forward or backward)
differences for the first derivative terms. For the model problem, it results
in bounded but complex eigenvalues with real parts tending to zero. Many
iterative schemes perform badly on such problems. For the staggered mesh the
eigenvalues of the preconditioned matrix for the model problem remain bounded
and real, with no loss of high wavenumber information.

These model problem results led us to consider a staggered mesh for the
Navier—Stokes equations. The staggered mesh which is appropriate for the
Fourier—-Chebyshev discretization is staggered only in the y direction. The
velocities are defined at the cell faces Ym» aS given by Eq. (2.5), and the
pressure is defined at the cell centers

= cos(m(m - 14 )/N) 1,0 ,N. (3.2)

=]
n

Y- b@
The momentun equations are enforced at the faces, whereas the continuity
equations are enforced at the centers. The velocity boundary conditions are
enforced at the two walls. Note that there is no need for an artificial
pressure boundary condition at the walls,

The staggered mesh assigns one less vertical degree of freedom to the

pressure than to the velocities. This is common practice in finite element




techniques for the Navier-Stokes equations (see, for example, [12]). Huberson
and Morchoisne [13] have recently proposed a filtering procedure for spectral
solutions of the incompressible Navier-—Stokes equations on a non-staggered
mesh. It has the effect of removing one vertical degree of freedom from the
pressure.

Let us now examine some of the mechanics involved in employing a staggered
mesh for Eqs. (2.7) - (2.9). Focus first on the spectral evaluation of the
various terms. The explicit terms, denoted by H, and Hy, are evaluated in
a straightforward manner since they are required at the faces and involve only
the velocities. The same holds for the remaining velocity terms in the
momentum equations. The only complication here is the two terms involving the
pressure. From the values of Q at the centers, trigonometric interpolation
can be used to obtain Q at the faces. First, use the center values to

obtain the Chebyshev coefficients

N
-~ _ 2 o nn(m—l/z)
Po=% ) P(ynr-UQ) cos 5 m (3.3)
m=1
for n = 0,1,¢¢¢,N-1, where the dependence upon k and t has been

suppressed, Then set QN = 0 and compute the values of Q at the faces
" ¥oa Tmn
oy, ) = nzo Q, cos 5 m= 0,1,00¢,N. (3.4)

Both of these sums may be computed by fast cosine transforms. This takes care
of the pressure term in Eq. (2.7). The Qy term in Eq. (2.8) may be
evaluated from the values of Q at the faces in a standard fashion. For the

continuity equation one first evaluates
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at the cell faces in the standard manner and then interpolates this result to

the cell centers, via

- 2 N - Tnm
r = — ) cp T(yy) cos = (3.5)
Ne wm=0
n
for n=0,1,*+¢,N where
_ 2 n=0 or N
c = R (3.6)
n 1 1<n< N1
and
;_-( ) a= Ig ; cos-‘"(Ll/Z-?ﬂ m= l,o* N (3 7)
ym_l/z n=0 n N ’ siVe hd

The finite difference operator H pertains only to the left-hand side of
Eqs. (2.7) - (2.9). The second derivative of the velocities is evaluated by
3-point centered differences of the values at the faces, using the formula

appropriate for the non-uniform grid, e.g.,

:1 2 [um+1 - um _ um - um—l]

m Yml ~ ym—l ym+1 - ym ym - ym--l

The pressure term in the u momentum equation is approximated by a linear
average of the adjacent cell-centered pressure values. The vertical pressure

gradient term in the v momentum equation is approximated by 2-point

differences of the adjacent cell-centered pressure values. The streamwise
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velocity in the continuity equation is taken as the linear average of the

velocity values at adjacent cell faces and the vertical derviative of v uses
2-point differences of the adjacent cell faces values.
Order the unknowns as

A A

U = (ups vy Qpyps Ugs Vs Qgypst®ts U Vs Qpyy))

and order the equations as

continuity at Y1/2
v momentum at Y1

u momentum at ¥y,

continuity at YN-3/2
v momentum at Yy i

u momentum at yy_j

u BC at yy
v BC at yy

continuity at yy-1/2¢

This requires the velocity boundary conditioms at y5 to be absorbed into the
matrix. This ordering produces a block tridiagonal structure for H that can
evidently be solved without pivoting within the diagonal block. (We have no
proof for this claim, but we have made numerous checks. In all cases the
solution without pivoting produced results that agreed with solutions with

pivoting to at least 8 digits.)
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For k =0 the structure is even simpler. The velocity ¥V is constant
in vy, the velocity u satisfies a tridiagonal equation, and the pressure
6 satisfies a bidiagonal equation. The latter is solved by setting
a(ykb) = 0 and then solving for each successive value of pressure. This
particular choice of ’(\Q(y'l/2 ) is arbitrary and corresponds to specifying the
mean level of pressure.

We have computed eigenvalues of gl L not only for the staggered grid
method but also for the same three alternatives that were discussed for the
model problem. In these cases the pressure is defined at the cell faces and
the continuity equation is enforced at the cell faces. This version requires
numerical boundary conditions for the pressure at the walls. The continuity
equation and the vertical momentum equation yield

ny - ‘“A‘(‘“A‘)y'
The finite difference approximation uses one-sided differences and the
matrix H is still block tridiagonal.

The eigenvalues of the preconditioned matrix H—1 L for the Navier-Stokes
equations are displayed in Figures 1 and 2 for two wavenumbers and for four
different discretizations of the first derivative terms. The calculations
were made for a K = 32, N = 16 grid, with u = (7500)—1 and a streamwise
CFL number of O.l.

The results for i =1 are particularly interesting. When central
differences for the first derivative terms are used, there are several complex
eigenvalues with large real parts. The remaining eigenvalues are real with

1.0 € XA < 4,5, As N 1increases, both the real and imaginary parts of the

12




eigenvalues grow. (The largest eigenvalues for N = 24 and 32 are 12.3 #i
4.5 and 16.5 *i 6.4 respectively.) When the upper one~third of the Chebyshev
modes are cut off in the first derivative representation the spectrum is
apparently bounded from above. However, there are now a number of complex
eigenvalues with small real parts. One-sided first differences yield mainly
complex eigenvalues including some with very small positive real parts. When

~

the mesh is staggered, all the eigenvalues for k =1 1lie close to the real
axis between 1 and u/2 = 1.57.

The eigenvalue spectra are only slightly different at higher wavenumbers,
as illustrated in Figure 2 for i = 10. Although there are some complex
eigenvalues for the staggered mesh, they are reasonably well-confined.
Similar eigenvalue calculations have been performed for the staggered grid
algorithm for N = 24 and N = 32. The real parts are still confined
between 1 and 7/2 and the magnitudes of the imaginary parts decrease as
N increases.

Note that the model problem estimates the eigenvalue trends surprisingly
well considering that it is just a scalar equation, has only first derivative
terms, and uses Fourier series rather than Chebyshev polynomials.

The preceding results indicate that the staggered grid leads to the most
effective treatment of the first derivative terms. The condition number of
the preconditioned system is reasonably small and full resolution is retained.
However, the iterative scheme used for solving Egqs. (2.7) - (2.9) must be
capable of dealing with the complex eigenvalues. Two types of iterative
schemes are feasible. Chebyshev iteration [14] will converge because the real

parts of the eigenvalues are greater than 1. However, this method contains

parameters that depend upon the location of the eigenvalues in the complex

13



plane. Alternatively, a parameter-free variational method [15] such as the
minimum residual (MR) method will work provided that the Hermitian part of
el s positive definite. This condition 1s satisfied for all the cases
discussed in this paper.

The preconditioned version of MR for Eq. (2.13) involves making an initial

guess UO, computing the initial residual

R =F - LU, (3.8)

solving

HZ® = R (3.9)

and then iterating according to

I
a = ____(Lzz» Rl) (3.10)
Lz*,Lz%)
gttt oo gt s o 7 (3.11)
gL gt —, Lz (3.12)
g+l - gitl (3.13)

until convergence. The parameter a, in Eq. (3.10) is chosen so that the
residual 1in Eq. (3.12) 1is as small as possible consistent with the

prescription (3.11). Representative convergence histories for the MR method

are shown in Figure 3 where the Ly norm of the residual is plotted against a

14




number of iterations for N = 16, 32, and 64. At a Reynolds number of 7500,
each iteration is found to reduce the residual by almost an order of magnitude
and there is a trend of faster convergence with increasing N which may be
partly attributed to the higher resolution. The physical results to be

presented in Figure 5 and Table III become insensitive when the Ly norm is

smaller than 1076,

4., EVOLUTION OF SMALL DISTURBANCES IN CHANNEL FLOW

In order to test the algorithm proposed for Navier-Stokes equations, we
study the problem of the evolution of small disturbances in channel flow.
This problem has been studied extensively using the Orr—-Sommerfeld equation.
When the amplitude of the disturbances imposed upon the mean (time
independent) channel flow u(y) = (1 - yz) is small, then the numerical
solution of the Navier-Stokes equation should be the same as that implied by
the Orr-Sommerfeld solution. This linear solution has the form

u(x,y,60) = (1= 5°) + ¢ Re(9 (3) ellaxwt)y (4.1)

-€ Re{iaw(y)ei(QXﬂnt)}

v(x,y,t) , (4.2)
where ¢ 1is the eigenfunction normalized to a maximum value of 1, w is the
complex frequency (with the largest imaginary part), a is the prescribed
wavenumber, and € 1s the perturbation amplitude.
The perturbation flow energy E(t) 1is
Lx 1

E(t) = j dx f {[u(x’}')t) = (l—yz)]z + VZ(X,y,t)}dY. (4‘3)
0 -1

15



where Lx = 2n/a. Choose initial conditions from Eqs. (4.1) and (4.2) with

2w, t
t =0 and let Ejy = E(0). For small amplitudes E(t)/E0 = e i .

The particular problem chosen for study had u = (7500)_l and a = 1. The
only unstable mode has ® = 0,24989154 + i.00223498. The amplitude parameter
was € = ,000l. Two different discretizations in y  were used: (1)
Chebyshev collocation and (2) finite differences. Both methods used a Fourier
collocation method in Xe The Fourier-finite difference method used a
staggered mesh, with the cell centers given by Eq. (3.2) and the cell faces
located midway between the neighboring cell centers. This method is just that
of Moin and Kim [7], applied to a direct simulation. Only four collocation
points were used in the x-direction. For this basically linear test problem,
the x-direction has essentially perfect resolution. The time step was small
enough so that the vertical discretization errors were predominant in all but
the most highly resolved cases.

The basic comparison of the vertical discretizations 1is provided in
Figures 4 and 5, where the natural logarithm of the perturbation energy ratio
is plotted. The solid line in the figures represents the linear stability
result. The finite difference solution is plotted in Figure 4 for several
vertical grids. Even the N = 256 results are appreciably in error.

The Fourier-Chebyshev results are presented in Figure 5. The results for
the N = 32 grid are already in excellent agreement with the linear theory
results. The numerical results for N = 16 are wildly inaccurate. This is in
contrast with the finite difference calculations where 2n E/E0 at least
varies linearly with time for various grids. This behavior is typical of
spectral methods in general: 1if the resolution is inadequate, say worse than

20%, then the spectral results are inferior to finite difference results;
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however, once the 10% accuracy level 1is achieved, spectral results become
dramatically superior.

In the above calculations, all runs were terminated at t/to = 2 where
to is the time required for the wave to propagate through the streamwise
computational domain. In this case, ty = 25.1438. The calculated energy
ratio and its error at one and two periods are presented in Tables II and III
for the finite difference and the Chebyshev methods, respectively. The
convergence of the finite difference method is quadratic. The convergence of
the Chebyshev method is dramatic: the N = 32 spectral results are far better
than N = 256 finite difference results (and took less CPU time). The error
for the N = 64 Chebyshev case 1is dominated by time discretization and
nonlinear effects.

The spectral results were all obtained with a time-step corresponding to a
mean streamwise CFL number of 0.025 and with an explicit treatment of
advection. Such a small time-step is necessary for accuracy purposes.
Stability problems over two periods only arise for CFL numbers above 0.30.
The advantage of the capability of the algorithm to treat the mean advection
implicitly arises in calculations with higher spatial resolution. An example
is provided by calculations for this same test problem using 16 Fourier modes
rather than 4. The semi-implicit advection version of the algorithm is stable

for CFL numbers as large as 1. However, the accuracy suffers for such large

time-steps.
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S. DISCRETIZATION FOR EXTERNAL BOUNDARY LAYERS (0 < y < n_)

This numerical method may also be applied to a model of the external
boundary layer. In order to use periodic boundary conditions in the
streamwise direction, one must make the parallel flow assumption, i.e., fix on
some reference location in a spatially growing boundary layer and use the
corresponding mean velocity profile at all x. One must then set the mean
vertical velocity to zero and make a minor adjustment to the mean streamwise
pressure gradient to achieve parallel flow.

A stretching transformation can be applied in the (unbounded) vertical

direction. Let

(5.1)

where y is the physical vertical coordinate, £ 1is the computational
coordinate and a and b are constants. Let n, be the upper boundary in

the physical plane and set

b=1+—,. (5'2)
Then for any choice of the scaling parameter a, the computational coordinate
£ falls within the standard Chebyshev interval [-1,1]. Derivatives in the

vertical direction are evaluated by multiplying the Chebyshev collocation

derivative in £ by the Jacobian of the transformation, i.e.,

(5.3)

The necessary modifications to Eqs. (2.7) to (2.12) are straightforward.

18




A number of choices are available for the numerical boundary condition at
Nee The simplest is to require that the solution at y = n_  correspond to
the flow at infinity. This is accomplished by setting U at vy = n, for
ﬂ = 0 equal to the free stream velocity and setting all other velocity

components tO zero. Another approximation was used by Fasel [16] in his

finite difference calculations of the boundary layer:

- liefu

[=
Wl

(5.4)

<
L]

These two alternatives will be referred to below as the zeroth-order and
first-order boundary conditions, respectively.

The finite difference preconditioning matrix is straightforward. Both
types of upper boundary conditions lead to a block tridiagonal structure for
H (which does not appear to require pivoting). The eigenvalues for the pre-
conditioned matrix are illustrated in Figure 6. The grid has K = 32, N = 16,
and the Reynolds number (u_l) is 7500, Three different CFL numbers (0.01,
0.1, 1.0) are checked and the effect is found to be negligible. The eigen-
values do tend to become widely apart with increasing n_. For fast
convergence, therefore, one would like to impose the freestream boundary
conditions at as small n, as possible. Representative convergence histories
of the MR method for the boundary layer case are shown in Figure 7. Boundary
conditions are imposed at n_ = 10 and 20. Both the zeroth and first-order
boundary conditions are used and the convergence is found to be significantly
faster in the latter case. The physical results to be presented become

insenstive when the L, norm is smaller than 1076,
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We now describe results of computations of the evolution of small
disturbances in flat plate flow with no-slip boundary conditions at the solid
wall. The initial conditions are the Orr-Sommerfeld solution imposed upon the
Blasius profile.

The particular problem chosen for study had u = (1500)_1, a = .3 and
w = ,10288548 + 1.00249003. The zeroth-order boundary conditions were
imposed at n_ = 20. The amplitude parameter ¢ 1is taken to be .000l. Four
Fourier spectral modes were used in the streamwise direction. All runs were
terminated at t/to = 2 where t3 1is the time required for the wave to
propagate through the streamwise grid. In this case ¢t = 61.0689.

Results analogous to those provided earlier for channel flow are given in
Figures 8 and 9 and Tables IV and V., The N = 32 Chebyshev results are far
more accurate than the N = 256 finite difference results and required less
CPU time. Some additional Fourier—-Chebyshev calculations were performed to
assess the upper boundary conditions. The results are reported in Table VI in
terms of the energy error after two periods. For n_ = 10, first-order
boundary conditions provide a significant improvement in accuracy over the
zeroth-order ones. At n_ = 20, however, the improvement is marginal. The
results for first-order boundary conditions at n, = 10 are plotted in Figure
10. Significant improvement for N = 16 can be noted in comparison with
Figure 9 where zeroth-order boundary conditions were imposed at n, = 20.

In order to test the variable viscosity capability of the numerical
algorithm, we applied it to water boundary layers with wall heat transfer.
The viscosity of water is a strong function of temperature, decreasing with
increasing temperature. Thus, heating of water boundary layers has a

stability effect. We used the empirical temperature-viscosity formula given

ian [17].
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An Orr-Sommerfeld equation for incompressible flow to include the effect
of viscosity can be derived as in [18] by neglecting temperature perturba-
tions. This equation has been solved to provide initial conditions for the
Navier-Stokes code which also neglects the temperature perturbation. The free
stream temperature 6_ is assumed to be 293° X and three wall-to-freestream
temperature ratios were examined: ew/em = 1.1, 1.0, 0.9. The resulting
viscosity distributions calculated are plotted in Figure 1l. The freestream
Reynolds number (um)—1 = 10000 and o = 0.15. The Orr-Sommerfeld
eigenvalues and time periods (to) for the three cases are given in Table
Vii. The Navier-Stokes solutions for the three temperature ratios are
presented in Figure 12. The solution has been obtained with first-order
boundary conditions imposed at n_ = 20 and using N = 32. 1In each case 500
time steps were used to reach t/to = 2. The solid 1line in each case
represents the theoretical results. While the growth rates are vastly
different for the three cases, the calculated results are in good agreement
with the theory. The calculated energy ratios and errors are given in Table
VIII.

In Figure 12, a strong stabilization effect may be noted when the wall-to-
freestream temperature ratio ew/em is increased from 1 to 1.l. These
calculations were performed with € = .0001 wusing four Fourier spectral modes
in the streamwise direction. In order to study the effect of nonlinearity, we
have recomputed the ew/ew = 1,1 case using eight Fourier spectral modes in
the streamwise direction for ¢ = .0001, .01, .03, .OS5. The results are
presented in Figure 13 along with the linear Orr-Sommerfeld solution. It can
be seen that the energy rate increases with increasing perturbation amplitude

€. A thorough set of two-dimensional and three-dimensional finite amplitude



results, produced by the latter two authors in collaboration with D. Bushnell,

will be presented elsewhere.

6. CONCLUDING REMARKS

A Fourier-Chebyshev spectral method for the solution of the incompressible
Navier—-Stokes equations has been presented. This fully spectral method is
applicable to both the internal and external boundary layers with variable
viscosity. The method uses Chebyshev polynomials in the vertical direction
and Fourier spectral collocation in the horizontal direction. The continuity
and momentum equations are solved as a set of coupled equations without
splitting., A staggered grid is employed in the vertical direction so that no
numerical pressure boundary conditions are needed. The resulting implicit
equations are solved by a preconditioned iterative technique. The algorithm
has been subjected to extensive testing by applying it to problems in
hydrodynamic stability in channel flow and external boundary layers with
constant and variable viscosity. The results obtained with 33 Chebyshev
polynomials are found to be much more accurate and require less CPU time than

when 257 finite difference grid points are used.
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Table I. Preconditioned Eigenvalues for One-dimensional
First Derivative Model Problem

26

Preconditioning Eigenvalues
Central Differences Ax
sin(aAx)
Ax
m 0« IAx| < (21/3)
High Mode Cutoff
0 (2r/3) < |Ax| <7
One-sided Differences e—i(Ax/Z) Ax/2
sin((an)/Z))
(Ax)/2

Staggered Grid

sin((Ax)/Z)




Table II. Channel Fourier-Finite Difference Convergence

1 period
N Ef/Eolcalc. Ef/Eolerror
16 .31369085 -.80526006
32 59348926 -.52546165
64 .93539768 -.18355323
128 1.06837752 ~-.05057339
256 1.10598936 -.01296155

2 periods
N Ef/Eolcalc. Ef/EOIerror
16 .45883275 -.79321839
32 «26725477 -.98479637
64 .81641093 ~.43564021
128 1.12221673 -.12983441

256 1.21820807 -.03384307
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Table III. Channel Fourier - Chebyshev Convergence
1 period
N Ef/EOIcalc. Ef/EOIerror
16 1.17188803 .05293712
32 1.11912239 .00017148
64 1.11896735 .00001644
2 periods
N Ef/EOlcalc. Ef/Eolerror
16 2.07329163 0.82124050
32 1.25291992 .00086879
64 1.25214542 .00009429
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Table IV. Boundary Layer Fourier-Finite Difference Convergence
1 period
N E¢/E lc. E
f/ Olca € f/EOIerror
32 1.4144405 0.05899918
64 1.2294246 -0.12601673
128 1.3213179 ~0.03412346
256 1.34699412 -0.00844721
2 periods
N Ef/EO'calc. Ef/EOIerror
32 4,4395339 2.6023126
64 1.5376562 -0.29956505
128 1.7459684 -0.09125289
256 1.8144658 -0.02275544
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Table V. Boundary Layer Fourier - Chebyshev Convergence
1 period
N Ef/Eolcalc. Ef/EOIerror
16 1.2760938 ~0.07934649
32 1.3554140 0.0000263
64 1.3554399 -0.00000040
2 periods
N Ef/Eolcalc. Ef/E0|error
16 1.3200385 -0,51718473
32 1.8376986 0.00048000
64 1.8372536 0.00003501
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Table VI. Effect of n_ and Top Boundary Condition

Ef/EOIerror

N n, =10 n, = 20

Oth order lst order Oth order 1st order
16 -0.21312422 0.16289710 ~0.51718473 -0.52723330
32 ~-0.09173191 0.00023775 0.00048000 0.00021268

Table VII. Orr-Sommerfeld Solution for Water Boundary Layer
with Wall Heat Transfer (a = 0.15, (um)'1 = 10000)

Bwlew w to
1.1 0.02872049 + 1 0.00020520 218.7701
1.0 0.03386607 + 1 0.00343206 185.5303

0.9 0.03445962 + 1 0.01259238 182.3347




Table VIII. Navier-Stokes Solution for Water Boundary Layer with
Wall Heat Transfer (ymax = 20, N = 32, 1st order B.C.)

1 period
ew/em Ef/Eolcalc. Ef/Eolerror
1.1 1.0946078 0.00067076
1.0 3.5720516 -0.00127094
0.9 99.374109 0.67521093
2 periods
ew/ew Ef/E0|calc. Ef/Eolerror
1.1 1.1972253 0.00052696
1.0 12,757289 -0.01134543

0.9 9871.3827 129.91024
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure Captions
A plot of k =1 channel flow eigenvalues of the preconditioned
matrix H ! L for four first derivative treatments. In this case

yl - 7500, CFL = 0.1, N = 16, and K = 32,

A plot of k = 10 channel flow eigenvalues of the preconditioned
matrix H !} L for four first derivative treatments In this case

w1 = 7500, CFL = 0.1, N = 16, and K = 32.

Convergence history of the minimum residual method for the channel

flow problem (u_1 = 7500).

Computed perturbation energy ratio for channel flow problem
(u—1 = 7500). A Fourier spectral method in x and a second-order
finite difference method in y are used. Results are shown for a

four point grid in x and for various grids in y. The solid

line is the correct result.

Computed perturbation energy ratio for channel flow problem

(!

= 7500). A Fourier spectral method in x and a Chebyshev
spectral method in y are used. Results are shown for a four

point grid in x and for various grids in y. The solid line is

the correct result.
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Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

A plot of the eigenvalues of the preconditioned matrix gl L for
an external boundary layer using the staggered grid. In this
case, u-l = 1500, N = 16, and K = 32. Zeroth-order boundary

conditions are imposed at n_.

Convergence history of the minimum residual method for the
boundary layer problem. Zeroth-order boundary conditions are used
in the parts of the figure on the left-hand side and first-~order

conditions in parts on the right-hand side.

Computed perturbation energy ratio for the boundary layer problem
with constant viscosity (1.1"1 = 1500). A Fourier spectral method
in x and a second-order finite difference method in y are
used. Results are shown for a four-point grid in x and various

grids in y. The solid line is the correct result.

Computed perturbation energy ratio for the boundary layer problem.
A Fourier spectral method in x and a Chebyshev spectral method
in y are used. Results are shown for a four-point grid in x
and various grids in y. The solid line is the correct result. 1In
this case, zeroth-order boundary conditions are imposed at

n, = 20.

Computed perturbation energy ratio for the boundary layer problem.
A Fourier spectral method in x and a Chebyshev spectral method

in y are used. Results are shown for a four-point grid in x
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Figure 11.

Figure 12,

Figure 13,

and two different grids in y. The solid line 1is the correct
result. 1In this case, first-order boundary conditions are imposed
at n_ = 10.

Variation of viscosity for a water boundary layer with and without

wall heat transfer (6°° = 293° K).

Computed perturbation energy ratio for a water boundary layer
(u;1 = 10000) wusing a Fourier-Chebyshev spectral method. The
results shown are for a four-point grid in x and a 33 point-grid
in vy. Bw/e°° = 1.1, 1.0, 0.9 pertain to wall heating, no heating

and wall cooling respectively. The solid lines are the correct

results,

Computed perturbation energy for a water boundary layer

(u;1= 10000, GW/G°° =1.1). The results are shown for various
initial perturbation amplitudes to 1indicate the effect of
nonlinearity and were computed by using an eight-point grid in x

and a 33-point grid in y. The solid line is the linear result.
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